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Abstract 
A simple queueing model of busy air- 

port departure operations is proposed. 
This model is calibrated and validated 
using available runway configuration and 
traffic data. The model is then used 
to evaluate preliminary control schemes 
aimed at alleviating departure traffic con- 
gestion on the airport surface. The po- 
tential impact of these control strategies 
on direct operating costs, environmental 
costs and overall delay is quantified and 
discussed. 

Introduction 

The continuing growth of air traffic around the world 
is resulting in increasing congestion and delays. Av- 
erage block times between busy city pairs in the US. 
are constantly increasing (for example, the average 
gate-to-gate time from Boston airport to Washing- 
ton National airport increased by 20% from 1973 
to 1994 [l]). The major bottleneck of the U.S. Na- 
tional Airspace System (NAS) appears to be the air- 
ports. In less than ideal weather conditions, arrival 
and departure capacity can be dramatically reduced, 
while the airlines are often reluctant or unable to re- 
duce the demand by cancelling flights. The reduced 
departure capacity can result in very long taxi-out 
times at peak hours, as the departing aircraft wait 
in a queue before being allowed to take off. These 
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very long taxi-out times not only increase the direct 
operating costs for the affected flights, but also re- 
sult in increased noise and pollutant emissions on 
the surface of the airports. 

It appears therefore desirable to develop mecha- 
nisms to reduce these departure queues. The high 
financial and political cost of increasing airport ca- 
pacity by adding new runways make a strong case 
for researching operational improvements to the ex- 
isting system. This paper develops and validates an 
input-output model of the current departure process 
at a busy airport, and uses this model to estimate 
the feasibility and the benefits of departure control 
mechanisms which aim at reducing departure queues 
in low capacity conditions. 

Many relevant airport models have been devel- 
oped and described in the literature. Highly de- 
tailed (or “microscopic”) models such as SIMMOD 
or TAAM [2], reproduce in great detail the layout 
of an airport and the operating rules and dynamics 
of every gate, taxiway and runway for every aircraft 
type. These models are useful to test procedural 
changes in routing aircraft on the taxiway system. 
The downside of these models is the difficulty and 
high-cost of obtaining statistically significant valida- 
tion data for all the elements of the airport under 
many different configurations, and to carry out an 
exhaustive validation from these data. It is there- 
fore difficult to obtain from these models quick and 
reliable estimates of the benefits of new operations 
concepts at the scale of the airport over a long period 
of time. 

Other models, such as the Approximate Network 
Delays model (A.N.D.) [21[31, take an aggregate (or 
“macroscopic”) perspective of capacity and demand 
at an airport over the course of the day and provide 
estimates of delays. These models allow to study the 
propagation of delays at the scale of the NAS, but 
their macroscopic view of the airports does not cap- 
ture enough details of individual airport operations 
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to study taxi-out time reduction schemes. 
This paper takes an intermediate modeling ap- 

proach, in which input-output models of the airport 
terminal, taxiway and runway systems are put to- 
gether to obtain a “mesoscopic” airport model. The 
airport terminal system and the runway system are 
modeled as queueing servers, and a stochastic distri- 
bution is derived for the travel time on the taxiway 
system from the terminal to the runway queue. This 
model captures the departure process in enough de- 
tail to estimate the effectiveness of departure control 
schemes in reducing taxi-out times, while remain- 
ing simple enough to allow a rapid calibration and 
validation in each runway configuration. A similar 
modeling approach was used by Shumsky to develop 
deterministic models which forecast takeoff times of 
flights from major airports [4H51. Some of these mod- 
els represent the runway system as a queueing server 
whose capacity is constant over 10 minute intervals. 
In these models, aircraft reach the runway queue at 
the end of a nominal travel time on the taxiway sys- 
tem. Shumsky also observed a relationship between 
airfield congestion and airport departure rate which 
is the basis of a simple departure control strategy 
evaluated in this paper. The mesoscopic modeling 
approach was also followed by Hebert L6], who devel- 
oped a model of the departure process at  LaGuardia 
airport, based on five days of data, to predict depar- 
ture delays. In this model, the departure demand 
is a non-homogeneous Poisson process, and taxi-out 
times are modeled as the sum of a nominal travel 
time to the runway queue and a runway service time. 
The runway is modeled as a multi-stage Markov pro- 
cess in which service completions follow an Erlang-6 
distribution. The runway server can also become 
absent after a departure, and the absence time dis- 
tribution is Erlang-9. 

The contributions of the present paper are to pro- 
vide a model of an airport departure process that 
is thoroughly validated over a year of operational 
data and to use this model to quantify the effects 
of departure process control. This work differs from 
previous publications by the following characteris- 
tics: 

the stochastic model of the airport developed in 
this paper accounts for such explanatory m i -  
ables as runway configurations and airline ter- 
minal location. 

in each runway configuration, the following 
model parameters are calibrated using one year 
of historical data: 

- distribution of travel time from the termi- 
nals to the departure runways 

- departure runway service rate 

in each runway configuration, the following 
model outputs are validated using a different 
year of data: 

- distribution of the number of aircraft on 
the taxiway system, 

- distributions of taxi-out times in light, 
moderate and heavy traffic conditions 

- distribution of achieved departure rate 

departure control schemes are proposed and 
tested on the departure process model. The 
reduction of runway queueing times achieved 
by these control schemes is translated into re- 
ductions in direct operating costs and pollutant 
emissions. 

the departure demand used to test the depar- 
ture control schemes is taken from historical de- 
mand records to accurately represent “schedule 
bunching” (e.g. many flights are scheduled at 
round times for marketing reasons). 

The paper is structured as follows: section 1 intro- 
duces the ASQP and PRAS datasets that were used 
to validate the model and served as a baseline for the 
testing of new departure process control laws. Sec- 
tion 2 describes in detail the structure on the model 
and the calibration and validation process. Section 3 
introduces simple departure process control schemes 
and estimates their benefits via computer simula- 
tions. 

1 Data sources 

1.1 Airline Service Quality Perfor- 
mance (ASQP) database 

The Airline Service Quality Performance (ASQP) 
data are collected by the Department of Transporta- 
tion in order to calculate on-time performance statis- 
tics for the 10 main domestic airlines. The data 
sets include all the flights flown by the following ten 
airlines: Alaska, American, America West, Conti- 
nental, Delta, Northwest, Southwest, TWA, United, 
and U S .  Airways. 
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For every flight recorded, the data set contains 
operational information such as: 

- scheduled and actual gate departure time 
- actual takeoff time and landing time 
- scheduled and actual gate arrival time. 

ASQP data sets are made available to the public 
monthly (with a 2 month delay). The monthly files 
include around 400,000 flights. For all airlines ex- 
cept Southwest, the “actual” data are automatically 
reported through the ACARS (Automatic Commu- 
nications And Reporting System) data link system. 
For instance, the gate departure time is recorded 
when the aircraft brakes are released. These data 
were validated in the case of Boston Logan airport [l] 
and it was found that although the brake release sig- 
nal may differ from the actual start of the pushback 
procedure, recorded times were very close to the ob- 
served ones. 

Actual take-off times have been made publicly 
available only since January 1995. Taxi-out time 
is defined in this paper as the time between actual 
pushback and takeoff. At  Boston Logan airport, 
aircraft are constantly under the control of the Air- 
port Control Tower between these two events, while, 
in the case of some larger hub airports, they are 
handed off from the airline ramp controllers to the 
Airport Control Tower at an unknown time. The de- 
parture process at an airport such as Boston Logan 
is thus expected to display less variability. It is also 
important to mention that since a single company, 
ARINC, receives these data in real-time, it would 
be relatively easy to feed them in real time into a 
control facility. 

Note that ASQP data only take into account do- 
mestic jet operations of the ten major airlines, even 
though the turboprop operations of regional airlines 
can account for as much as 45% of the landing and 
take-off operations at an airport like Boston Logan. 
It is assumed in this paper that a useful model of 
the jet aircraft departure process can still be iden- 
tified and validated, even though the turboprops do 
compete for the same taxiways and runways, espe- 
cially in low-capacity configurations. However, the 
methods presented here could easily be made more 
accurate by considering more complete datasets as 
they become available. In particular, the uncertain- 
ties that were observed throughout the study of the 
departure process could be significantly reduced if 
more data on turboprop operations were available. 

1.2 Preferential Runway Assignment 
System (PRAS) database 

The mix of runways that are in use at  an airport at 
any given time is called the “runway configuration”. 
Consider for instance the layout of Boston Logan 
airport shown on figure 1. 

Figure 1: Layout of Boston Logan International Air- 
port 

Different departure and arrival runways are used 
depending on weather conditions and airspace or 
noise abatement procedures: 

0 In good weather, parallel visual approaches may 
be used on runways 4L and 4R to achieve a 
high landing rate, while departures take place 
on runway 4R and on the intersecting runway 9 
to achieve a high departure rate. 

0 In bad weather, and if the winds are strong, 
only one runway (for instance runway 33L) may 
be available for takeoff and landings. In such 
configurations, the departure and landing ca- 
pacities of the airport are greatly decreased. 

Figure 1 clearly shows that the travel time of a 
flight from its gate to the runway threshold will vary 
significantly with the position of the gate in the ter- 
minal and the position of the runway on the airport 
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surface. The runway configuration is therefore an 
important factor in the airport taxiing operations. 

Runway configurations are chosen by the airport 
tower controllers along the course of the day as the 
weat her evolves. Unfortunately, historical runway 
configuration data are usually recorded only manu- 
ally in logbooks and are archived for a limited time. 
However, to monitor noise abatement procedures, 
the Massachusetts Port Authority has implemented 
a Preferential Runway Assignment System (PRAS) 
which keeps a digital log of runway configurations 
within the Boston Logan control tower. This pa- 
per will therefore concentrate on Boston Logan air- 
port, but the identification and control methods it 
introduces could be used at any other airports where 
configuration data would be available. 

The PRAS runway configuration data show that 
Boston Logan airport usually operates in high- 
capacity configurations (for 81% of the departure 
operations, the estimated departure capacity[7]) of 
the configuration was above 44 aircraft per hour. 
However, the impact of low-capacity configurations 
is still important since they are associated with de- 
parture delays and very long taxi-out times. 

2 Model Calibration and Validation 

Subsection 2.1 outlines the structure of the model. 
Subsection 2.2 explains in detail the calibration pro- 
cess of each element of the model, and presents com- 
parisons of model outputs with historical data. Sub- 
section 2.3 presents model validation results. 

2.1 Model Structure 

A schematic of the model is shown on figure 2. The 
evolution of the system is modeled over diqcrete 
1-minute time periods: t = 1,2 ,  ... 

Runway queue w 
Figure 2: Structure of the departure process model 
for current operations 

the number of pushback requests 
during period t. 
the number of aircraft which are 
cleared to push back by the airport 
tower controllers during time 
period t. 
the number of pushbacks actually 
taking place during period t. 
the number of departing aircraft 
on the taxiway system at the 
beginning of period t. 
the number of aircraft reaching 
the runway queue during period t. 
the number of aircraft left waiting 
in the departure queue on the 
taxiways at the end of period t 
(note that this queue may in some 
cases be spread between several 
departure runways) 
the capacity of the departure 
runways during period t. 
the number of take-off during 
period t. 

The dynamics of the model are as follows: 

0 Airport Tower control action: 
C(t )  is determined by the airport tower con- 
trollers, and can take into account: 

- the current traffic conditions on the air- 

- the current requests R(t).  
- the forecasts of future departure demand 

port surface. 

and capacity. 

It is assumed here that aircraft push back imme- 
diately after receiving their clearance, so that 
P(t )  = C(t). 

0 navel time: 
The arrivals at the runway queue A ( t )  are re- 
lated to pushbacks P(t)  through travel times in 
the following way: 

Pft--7)  

-7ZO k=I 

where V(t - T,  k, T )  is an indicator random vari- 
able which takes the value 1 if the k-th airplane 
pushing back at time t - T has travel time T to 
the runway queue. 
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0 Runway queue: 
The runway queue satisfies the following bal- 
ance equation: 

0 Takeoff: 
The achieved take-off rate is limited by the run- 
way capacity RC(t) and by the number RQ(t) 
of aircraft available for takeoff: 

T ( t )  = min([R&(t - 1) + A(t ) ] ,  RC( t ) )  (3) 

In addition, the “taxiway loading” parameter 
N (  t )  satisfies the following balance equation: 

N ( t )  = N ( t  - 1) + P(t - 1) - T(t  - 1) (4) 

2.2 Model Calibration 
The purpose of the calibration is to observe histori- 
cal inputs and outputs of the systems and to deduce 
“best” values for the model parameters. 

2.2.1 Pushback requests and clearances 

Figure 2 shows that the input of the model is the 
number of pushback requests R(t). However this in- 
put is not captured in the ASQP data. Indeed, the 
OAG (Official Airline Guide) only reflects the sched- 
uled departure times but does not account for inter- 
nal airline events or decisions which could delay the 
request for pushback of a flight. In addition, the con- 
trol action of the airport tower controllers between 
the requests for pushback and the actual pushbacks 
are not observed. Consequently, the model identi- 
fication presented in this paper focuses on the mo- 
tion phase of the departure process, i.e. the part of 
the model between P( t )  and T ( t ) .  Hence, the in- 
put used for model calibration is now the number of 
pushbacks P ( t )  during period t ,  which is the number 
of actual departures recorded during period t in the 
ASQP data. 

2.2.2 Travel time from terminals to runway 

The travel time from the terminals to the runway is 
not directly observed in the ASQP data. Indeed the 
taxi-out times listed in the ASQP dataset are mea- 
sured from pushback to takeoff, and are therefore 
the sum of the travel time to the runway queue and 
the runway queueing time. 

Observations of ASQP taxi-out times at off-peak 
hours, when N ( t )  is very low, give a good indication 
of travel time, since this will usually correspond to 
periods with little or no runway queue. 

For an aircraft I C ,  define N p ~ ( k )  to be the value 
of N when aircraft IC pushes back (i.e. the number 
of departing aircraft on the taxiway system when 
aircraft k pushes back). Figure 3 shows a typical 
distribution of the ASQP taxi-out times for aircraft 
such that NPB 5 2. Note that this travel time in- 
cludes the takeoff roll and initial climb until the 
time when the ACARS takeoff message is sent. 

O ’ t  I ’L\ 

Figure 3: Selection of a Gaussian distribution to 
match a light traffic taxi-out distribution 

The variability in these distributions arises from 
several factors: 

0 variability in the duration of the actual push- 

0 variability in turboprop operations taking place 

back and the engine start 

concurrently 

0 different flights from the same airline can be as- 
signed different departure runways or different 
taxi routes to the same runway 

0 taxi speed can be affected by visibility and air- 
craft types 

0 aircraft bound to certain destinations receive 
their weight and balance numbers later than 
others and thus take longer to enter the run- 
way queue 

In this paper, these factors are modeled as 
stochastic uncertainty. Gaussian-like probability 
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mass functions are fitted to the observed distribu- 
tions to obtain a reasonable model of travel time for 
low values of N .  For instance, a Gaussian distribu- 
tion with mean 9 minutes and standard deviation 
2.3 minutes was selected for the airline shown on 
figure 3. 

A simple estimate of the taxi-out time is then: 

7 = 7trouel + 7queue ( 5 )  

where: 
rtraUel = travel time following the light traffic dis- 

rqueue = queueing time at the runway. 
Note that this model will slightly overestimate the 

taxi-out time when N is large, because it does not 
take into account the fact that as the runway queue 
grows, the travel time Ttravel to reach it decreases. 

tributions described above. 

2.2.3 Departure runway service process 

The dynamics of runway systems have been the 
object of numerous studies and publications [81[gl. 
However, discrete event departure runway models 
which consider each takeoff individually remain dif- 
ficult to identify and validate. Indeed, while there 
are some data available on the output of the run- 
way system (e.g. ASQP take-off times), there are 
few or no objective and statistically significant data 
available on its inputs: 

times at which aircraft join a runway queue 

runway crossings by taxiing or landing aircraft 

landings on departure runways 

0 landings on intersecting runways 

0 take-off of turboprop aircraft 

Thus an analysis of inter-departure times cannot 
precisely distinguish whether a longer than average 
service time is due to a momentarily empty runway 
queue or to a server absence (such as a landing or 
runway crossing). 

The analysis of ASQP take-off data is further com- 
plicated by the poor time resolution of the dataset 
(the one minute time increments are comparable to 
typical runway service times). 

The approach that is taken in this study is to 
identify periods of time when the runway queue was 
unlikely to be empty, and to consider that the his- 
togram of take-off rates over these periods of time 

is a good approximation of the theoretical depar- 
ture runway service rate distribution. This approach 
would be easy to implement if the runway queue 
length RQ(t) could be directly observed. But since 
no runway queue length data are currently available, 
the number N ( t )  of departing aircraft on the taxi- 
way system is used instead. It will be shown that 
the value of N ( t )  is indeed a good predictor of the 
departure runway loading over some period of time 
after t .  

Define F,,(t) to be the “moving average’’ of take  
off rate, Le. the average of take-off rate over the time 
periods ( t  - n, ..., t ,  .. ., t + n). A normalized correla- 
tion plot of N ( t )  and F5(t) under configuration 8 is 
shown on figure 4 (i.e. figure 4 shows the value of 

Figure 4: Configuration 8: N ( t )  is well correlated 
with T 5 ( t  + 6 )  

The maximum correlation occurs for dt = 6 ,  i.e. 
between N ( t )  and p5(t + 6) .  This means that N ( t )  
predicts best the number off takeoff over the time 
periods (t + 1, t + 2, ..., t + 11). (Note that this is 
consistent with the travel times, which are typically 
around 8 to 15 minutes at  Boston Logan airport). 
Figure 5 presents histograms of ps(t + 6 )  for differ- 
ent values of N ( t )  for configuration 8 in 1996 (depar- 
tures on runways 9-4L-4R and landings on runways 
4R-4L). This is a high capacity, good-weather con- 
figuration that is used often throughout the year at 
Boston Logan. It accounted for 24.4% of all push- 
backs in 1996. 
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Figure 5: Evolution of 5?5(t + 6) as N ( t )  varies (con- 
figuration 8) 

As N increases, the take-off rate increases at first, 
and then saturates for N M 8. This phenomenon had 
been described in an aggregate manner (i.e. con- 
sidering all the runway configurations together) by 
Shumsky [41[51. 

The departure runway system model used in this 
paper is shown on figure 6. 

Robability 

I* 
0 C Capacity 

(aircraft per minue) 

Figure 6: Probability mass function of the depar- 
ture capacity of the runway system model' over one 
minute 

It is based on the server absence concept. For 
each time period, there is a probability p that the 
runway system is not available for takeoff. If the 
runway system is available however, its capacity is 
c aircraft over one time period (i.e. one minute). 
Paragraph 2.2.4 will demonstrate that even such a 
simple model of a complex multi-runway system can 
reproduce quite precisely the dynamics of the depar- 
ture process . 

Note that in this model during each time period 
the runway capacity is the result of a Bernouilli 
trial[lOl (with success if the runway system is avail- 
able for takeoff). 

Hence the departure capacity T,,(t) over the (2n+ 
1) time periods (t - n, ..., t, ..., t + n) follows the bi- 
nomial distribution: for 0 5 k 5 2n + 1 , 

The parameters p and c are chosen, for each con- 
figuration, so that the probability distribution in (6) 
matches the observed histograms of 5?5(t+6) for high 
N ( t ) .  For example, for configuration 8 table 1 shows 
that the values p = 0.5 and c = 0.9 give a good 
match. 

Actual Model 

Table 1: Actual and model values of T5(t+6) for high 
N ( t )  under configuration 8 ( p = 0.5 and c = 0.9) 

2.2.4 Comparison of model output with 

A computer simulation of the model described above 
was used to compare key model outputs with ASQP 
historical data. Each computer simulation run cov- 
ers all the time periods in 1996 when the selected 
configuration was used. 

Since the model will be used to evaluate queueing 
delays and test methods to reduce these delays, it 
should provide good estimates of: 

historical data 

0 how many aircraft are waiting in runway queues 

0 how long these aircraft wait in runway queues 

(i.e. RQ(t)) 

@e. T ~ ~ ~ ~ ~ )  

Since these values are not directly captured in the 
ASQP data, the model is evaluated instead on how 
well it predicts: 

0 how many aircraft are on the taxiway system 

0 how long taxi-out times 7 are, for various values 

when flights push back (i.e. N P B )  

of NPB 
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2.2.4.a High-capacity conffguration 
Figures 7, 8, 9 and table 2 show comparison re- 

sults for configuration number 8 (departures on run- 
ways 9 and 4R, arrivals on runways 4R and 4L). This 
configuration was in use for about 88200 minutes in 
1996 (i.e. about 1470 hours), and represented 21500 
pushbacks (which represents 24.4% of the total). 

figure 7 shows the "actual" distribution of NPB 
that was observed in the ASQP database over 
1996, along with the "simulated" distribution of 
NPB averaged over 10 runs of the simulation. 
Table 2 presents the first two moments of the 
observed and simulated distributions. 

0011- 0 0 1 -  oca- 0 1  

0.02 - [\ \ 
\ - 

0 4  \ \  

OW 0-1 

\\ 
p 

Figure 7: Actual and computer simulation model 
distributions of NPB in configuration 8 

002 O M  

Table 2: Comparison of actual and simulated NPB 
distributions for configuration 8 

t 

0 figure 8 presents the moving average of take- 
off rate T;(t + 6) as a function of N ( t ) .  The 
curves represent the mean of the distribution of 
T;(t + 6) for each N ( t )  , and the vertical bars 
extend one standard deviation above and below 
the mean. The dashed lines are the observations 
from ASQP, while the solid lines are simulation 
results. The fit is very good, which means that 
the model reproduces very well the relationship 
between departures and N .  

"0 2 4 8 8 10 12 

Figure 8: Moving average of takeoff rate T;(t + 6) 
as a function of N ( t )  for configuration 8 

0 figure 9 presents the distribution of r for one 
airline over three ranges of NPB:  light traffic 
(NPB 5 2), medium traffic (3 5 NPB 5 7), and 
heavy traffic (NPB 2 8) 

0'  ' ' 1  I 
5 10 15 20 25 30 35 40 45 

O:: 5 10 15 20 25 30 35 40 45 

0 1  

005 

0 / 

5 10 15 20 25 30 35 40 45 
TUI-OYI bme - mi& 

Figure 9: Taxi-out times in configuration 8 

As the traffic increases, the taxi-out time increases 
both in mean and in variance (this is a common 
occurence in queueing systems). The model provides 
good fits for NPB 5 7 but the fit is not as good for 

For the eight major airlines reported in the ASQP 
database at Boston Logan airport, the first two mo- 
ments of the taxi-out time distributions were com- 
puted. 

NPB 2 8. 
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Almost all of the mean errors were found to be 
quite small (well under lo%), but some mean er- 
rors were as high as 20%. For airlines with rela- 
tively few operations, this could reflect a small s a -  
ple with little statistical significance. Another ex- 
planation is that some airlines are subject to special 
constraints which are not included in our model (for 
instance, pushback and arrival operations are com- 
plex and highly coupled in an area of terminals B 
and C called the “horseshoe” [l]). The model tends 
to underestimate the standard deviation of the taxi- 
out distributions. This reflects the simple structure 
of the model, which does not fully account for some 
secondary factors: rare events (e.g. Ground Delay 
Programs), airspace constraints, differences in air- 
craft types, etc. 

0 2 -  

0 1 5 -  

O I -  

2.2.4.b Low-capacity configuration 
Figures 10, 11, 12 and table 3 show comparison 

results for configuration number 9, which is a lower 
capacity configuration (departures on runways 9 and 
4R, and arrivals on 4R only). Configuration 9 was 
in use for 21800 minutes in 1996 (i.e. about 360 
hours), and represented 3340 pushbacks (which rep- 
resents 3.9% of the total). Since it is a low capacity 
configuration, it contributes significantly to runway 
queueing and thus noise and pollutant emissions. 

”‘r 

HEAW traffic (N >= 8) actual . 
HEAW traffic model 

_ _  

0 12 

0 5 -  

0 4 5 -  

0 4 -  

0 3 5 -  

0 3 -  

0 25 - 

0 2 -  

figure 10 shows the “actual” distributions of 
NPB over 1996 along with the “simulated” dis- 
tributions (averaged over 10 simulation runs). 
Table 3 presents the first two moments of the 
actual and simulated distributions. 

figure 11 presents the moving average of take- 
off rate p5(t + 6) as a function of N ( t ) .  Again 
the match is quite good, which means that the 
model reproduces very well the relationship be- 
tween departures and N. 

1; I , 
0 2 4 6 8 I O  I2 

Figure 11: Moving average of take-off rate p5(t + 6) 
as a function of N ( t )  for configuration 9 

0 figure 12 present the distribution of T over three 
ranges of NPB . 

I ’  ‘ I  

‘3 Lighl baffic (N<=2) actual 
Llphlbaffic model 

_ _  

- 1 ..I L - 
iil/ 0 05 * .’,- I - - ,  ‘ 

5 10 15 20 25 30 35 40 45 

2 4 (I 8 I O  12 I 4  I6 

Figure 10: Actual and computer simulation model 
distributions of NPB in configuration 9 

Actual Simulated 
Mean Std.Dev. Mean Std.Dev. 

Table 3: Npg distributions for configuration 9 Figure 12: Taxi-out times in configuration 9 
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Again, it appears that as NPB increases, the taxi- 
out time increases both in mean and in variance. 
In this low-capacity configuration, the variance in 
taxi-out time becomes very large for large values of 
N p g  . Possible explanations include: 

0 2 -  

015-  

0 1 -  

transient queueing: if the demand on the de- 
parture runway temporarily exceeds the re- 
duced departure capacity, long queues can form 
quickly at the runway, causing a large increase 
in taxi-out time. 

unmodeled weather-related factors such as 
Ground Delay Programs. 

HEAW traMc (N >= 8) adual . 
H E A W I M c  madel 

For the eight major airlines reported in the ASQP 
database at Boston Logan airport, the first two 
moments of the taxi-out time distributions were 
again computed. The mean errors were found to 
be slightly larger than in the case of configuration 8, 
mostly because of the increased variability of opera- 
tions under low-capacity, bad weather scenarios. In 
addition, the samples are about 7 times smaller than 
in the case of configuration 8 (because configuration 
9 is not used as often) which could explain some of 
the high mean errors. 

2.3 Model validation 
Subsections 2.1 and 2.2 described the calibration of 
the departure process model based on 1996 ASQP 
data. To test the applicability of this calibrated 
model to other years, a formal validation was carried 
out. The computer simulation was given as input 
the 1997 departure demand data, and the resulting 
model outputs (distribution of NPB,  achieved take- 
off rate, and taxi-out times) were compared with the 
corresponding actual distributions computed from 
the ASQP data. 

In most runway configurations the model outputs 
still match very closely the actual data. For config- 
uration 4 (departures and arrivals on runways 22L 
and 22R) figure 13 shows the distribution of NPB 
given by the model along with the actual distribu- 
tion. Figure 14 shows the achieved take-off rates as 
a function of N ,  and figure 15 shows the taxi-out 
time distributions. 

In some configurations however, the model slightly 
overestimated the departure capacity (by a factor 
of 5% to 10%) and consequently underestimated 
surface congestion and delays. This could conceiv- 
ably be explained by different weather conditions or 
by some changes in operational procedures between 
1996 and 1997. 

0 02 

O:t , , , , '  , ; - - , -  _ ,  
2 . I I 10 12 1. $8 

Figure 13: Comparison of actual and simulated NPB 
distributions for configuration 4 in 1997 

O B  

'I , 
2 4 B 8 10 12 

Figure 14: Moving average of take-off rate Ts(t + 6) 
as a function of N ( t )  for configuration 4 in 1997 

-1 
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Figure 15: Taxi-out times in configuration 4 in 1997 
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3 Control of the DeDarture Process 

File1 

I $/min. in Queue I 

2 1 4 1  9 Subsection 3.1 introduces the two major incentives 
for reducing runway queueing times: 

- _ _ ~  
Flight crew 

Maintenance 
0 reductions in direct operating costs 

0 reductions in environmental costs. 

- 

6 12 20 
5 9 25 

Subsection 3.2 considers some of the constraints 
that must be taken into account in the formulation 
of departure process control schemes. 

Subsection 3.3 presents the results of the quanti- 
tative evaluation of simple departure process control 
schemes. This evaluation was conducted using the 
model developed in this paper. 

type 
Medium 

3.1 Motivation: Cost of runway 

3.1.1 Direct operating costs 

U S .  airlines are required to report Direct Operating 
Costs (DOC) data to the Department of Transporta- 
tion ("Form 41"[111). Even though these data can be 
affected by variability in accounting methods, they 
provide reasonable estimates of DOC. 

The major components of DOC are fuel costs, 
crew costs and maintenance costs. Note that 
marginal crew and maintenance costs are difficult to 
estimate because of the complex overhead costs that 
are associated with these components of airline oper- 
ations. Estimated DOC values are shown on tables 
4 and 5 for three different aircraft types: medium 
jets (e.g. Boeing 737), large jets (e.g. Boeing 757 
and 767) and heavy jets (e.g. DC-10 and Boeing 
747). These estimates are based on 1992 and 1995 
data [13[131) and are averaged over all major U.S. 
airlines. 

queueing vs gate delays 

jet operations 
65 

%/min. at gate 

Large 

Flight crew 
Maintenance 0 0 

Total 2.5 4.5 6 

30 

Table 4: DOC estimates at the gate 

Heavy 

Table 5 shows that the DOC of each minute of 
runway queueing time is between $13 and $54 (de- 
pending on the aircraft type), while table 4 shows 
that the DOC for a minute of delay at the gate is 

5 

Total I 13 I 25 I 54 1 
Table 5: DOC estimates in runway queue 

between $2.5 and $6. Hence a gate holding depar- 
ture control scheme which would transform runway 
queueing time into gate delays could realize DOC 
savings of $10.5 to $48 for each minute of delay, 
depending on the aircraft type. Table 6 shows an 
estimate of the jet aircraft departure t r d c  mix at 
Boston Logan (this estimate was obtained from En- 
hanced Traffic Management System (ETMS) data 
collected in June 1998). Combining the data in ta- 
bles 4,5 and 6 yields an average cost saving of $15.4 
for each minute of runway queueing time transferred 
to the gates. 

I Jet aircraft I % of Boston 1 

Table 6: Mix of jet aircraft departure operations at 
Boston Logan in June 1998 (from ETMS data) 

3.1.2 Environmental costs 

Airports are sensitive areas in terms of pollu- 
tion. The residents of nearby neighborhoods suffer 
from noise and pollutants generated by the airport. 
Among the pollutants emitted by aircraft are [141: 

- Nitrogen oxides (NO,) ,  which play a role in acid 
rains and are precursors of particulate matter (which 
reduce visibility) and low-level ozone (a highly reac- 
tive gas which is a component of smog and affects 
human pulmonary and respiratory health). 

- Unburnt hydrocarbons (HC), carbon monoxide 
(CO) and Particulate Matter (PM), especially at  
low engine power settings such as in taxi-out mode. 

- Sulfur oxides (SO,), which play a role in acid 
rain. 

Note that aircraft engine typically contribute 45% 
of the combustion pollutants emissions at an airport, 
while ground access vehicles contribute another 45% 
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and Ground Support Equipment (GSE) and Auxil- 
iary Power Unit (APU) usage contribute only 10%. 
Hence, there is a strong incentive to reduce aircraft 
engine emissions at the airport. A study for the 
Washington state Department of Ecology estimated 
that departure runway queueing is responsible for 
a significant part of aircraft pollutant emissions at 
the Seattle-Tacoma airport, and that in particular it 
accounts for approximately 20% of N O ,  emissions, 
50% of SO, emissions and 40% of P M  emissions. 

Table 7 shows engine emission characteristics for 
common aircraft and engine types, at the idle power 
setting that is typically used during the runway 
queueing [15] [16]. This table can be used to es- 
timate the environmental cost of jets queueing on 
the airport taxiways. The last row shows the aver- 
age emissions for one minute of jet aircraft runway 
queueing at Boston Logan airport, based on the per- 
centage of jet operations flown by each aircraft type 
(as found in the in the Enhanced Traffic Manage- 
ment System (ETMS) database in June 1998). 

Aircraft/engine Emissions (g/min) 
HC I CO I NOx 

I I 

B-727 / JT8D I 74.30 I 336.73 I 69.06 I 

Table 7: Jet engine aircraft emissions 

3.2 Guiding principles for control 
concepts 

Many airport surface operations control schemes 
have been envisioned, but few have emphasized es- 
sential human factors considerations (in particu- 
lar, important lessons were drawn from the De- 
parture Sequencing Engineering and Development 
Model program (DSEDM)[l]). Airport operations 
are almost entirely monitored and controlled by hu- 
man operators. Workflow and workload constraints 
should be considered whenever the feasibility of a 

new airport control scheme is evaluated. Any ma- 
jor change to the airport control procedures would 
be difficult to study in-situ. Indeed controllers are 
unlikely to accept any new procedures before they 
feel it has been proven that they not only work bet- 
ter than the current ones in all circumstances, but 
also maintain or improve safety and do not generate 
excessive workload or radical changes in controller 
roles and training. 

For example, control schemes centered on se- 
quencing should take into account the fact that air- 
craft sequencing might require more real-time obser- 
vations of the position of the aircraft on the taxiway 
system than are currently captured, and more inter- 
ventions of the controllers to ensure the sequence is 
realized at the runway threshold (indeed establish- 
ing the sequence through pushback clearances alone 
is not enough due to large uncertainties in pushback 
and taxi times [l]). These additional observations 
and interventions entail additional workload for all 
airport controllers. 

Thus it appears that the only control schemes 
which can bring immediate benefits are the ones 
which don’t require changing the airport control sys- 
tem extensively but rather help controllers take bet- 
ter decisions in their current work process. The 
“gate holding” schemes evaluated in subsection 3.3 
meet this criterion. They consist in holding selected 
aircraft at their gates (before clearing them for push- 
back) in order to prevent the development of long 
runway queues (a conceptual discussion of gate hold- 
ing as a means to reduce runway queueing time ap- 
pears in an MIT white paper[l7I). 

3.3 Quantitative evaluation of depar- 
ture process control schemes 

A complete evaluation of a “gate holding” control 
concept should consider how it would interact with 
the current Airport Tower control actions. However 
a conservative performance evaluation of such a con- 
trol scheme can be obtained if it is implemented as 
a simple gate queue immediately downstream from 
the Airport Tower controllers (i.e. it is assumed that 
Airport Tower control actions remain the same). 
Figure 16 presents the resulting “evaluation” model. 

Note that since it is assumed that the Airport 
Tower control actions are unaffected by the imple- 
mentation of the gate queue downstream, C(t) is 
still simply the number of actual pushbacks recorded 
during period t in the ASQP data. 
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Figure 16: Structure of the departure process model 
for control scheme evaluation 

Define: 

GQ(4 = the number of aircraft which 
have been cleared by the airport 
tower controllers at or before 
period t but are still being held at  
the gate by at  the end of period t. 

In addition to following the equations (1) through 
(3) with the parameters determined in section 2, 
the evaluation model follows the gate queue balance 
equation: 

GQ(t) = GQ(t - 1)+ C( t )  - P(t) (7) 
The number P(t) of aircraft which are released 

from the gate queue and push back during period 
t is governed by the specific gate holding algorithm 
that is to be evaluated. Paragraphs 3.3.1 and 3.3.2 
present examples of such gate holding algorithms. 

3.3.1 Quantitative evaluation of a feedback 
gate holding scheme 

An easily applicable gate holding scheme can be in- 
ferred from the departure dynamics shown on fig- 
ure 8 and 11. It appears on these figures that the 
throughput of the runway does not improve much 
when N becomes larger than a saturation value Nsat 
(e.g. Nsat M 6 in configuration 9). Indeed N > Nsat 
typically corresponds to periods when the runway 
queue is not empty and thus when the runway is 
operating at  maximum capacity. Allowing N to be- 
come larger than Nsat results in more aircraft in 
queue at the runway with little increase in through- 
put. These observations suggest a control scheme in 
which aircraft are held at their gates whenever N 
exceeds some threshold value N,. This amounts to 
controlling the number of pushbacks P ( t )  by setting: 

P(t )  = min( max(N,(t)-N(t),O) , GQ(t-l)+C(t) ) 

This control scheme would be easily implemented 
by human controllers at an airport like Boston Lo- 
gan, since N(t) can be observed in the tower as the 

(8) 

number of flight strips on the ground controller’s 
rack. It could also be part of a larger scale concep 
tual control architecture as described in some pre- 
liminary studies [181[191. Figure 17 shows the effect 
of the control scheme for different values of N,, un- 
der configuration 9. It was obtained through sim- 
ulation using the model shown on figure 16. The 
simulation was run for all the time periods of 1996 
when configuration 9 was in effect, using the actual 
departure demand found in the ASQP database but 
implementing the control scheme expressed by (8). 
The gate holding delay and runway queueing time of 
each flight were recorded. The total gate delay and 
runway queueing time over all these flights is shown 
on figure 17. 

Figure 17: Effect of holding aircraft at  the gates 
when N 2 N, in configuration 9, using actual 1996 
demand data (averaged over 10 simulation runs) 

As Nc becomes smaller than Nsat, the runway is 
“starved” and the reduction in runway throughput 
causes an increase in total delay. But for N ,  2 Naat, 
this control scheme simply replaces runway queue- 
ing time with gate delay with little impact on run- 
way throughput. Naturally, gate delay is less costly 
than runway queueing time, mostly because the air- 
craft engines are not running while the aircraft is 
at the gate (see subsection 3.1). The control law 
was found to have similar effects in other runway 
configurations. Table 8 presents results obtained for 
a set of six runway configurations which together 
represented 82% of the operations at Boston Logan 
airport in 1996. For each configuration, the value of 
N, was chosen in such a way that the total queueing 
time would not increase by more than about 5%. 
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The table shows that the control law is most ef- 
fective in low capacity configurations (i.e. when the 
demand would cause the airport to operate at  values 
of N significantly above the saturation value Nsat if 
no control law was applied). The overall reduction in 
runway queueing time over these six configurations 
is 7.1%, and the increase in total queueing time is 
only 3.2%. The effects on pollutant emissions are : 

0 1650 kg reduction in unburnt HC emissions 

0 8020 kg reduction in CO emissions 

0 1290 kg reduction in NO, emissions 

The net savings in Direct Operating Costs can be 
computed from tables 4, 5, 6 and 8 and amount to 
approximately $280,000. Note that these estimates 
apply to 82% of the jet traffic at the airport. Higher 
figures would be obtained if all the jet traffic was 
taken into account, and if turboprop operations were 
included in the model (since they represent as much 
as 45% of departure operations in Boston Logan). 
Adopting a more aggressive control law (by reducing 
N,) would result in larger reductions in pollutant 
emissions, but may result in lower Direct Operating 
Cost savings due to the increase in total queueing 
time it would introduce. 

Note finally that if all the runway queueing time 
occuring in these six runway configurations could be 
eliminated (as opposed to only 7.1% in the discus- 
sion above), the effect on pollutant emissions over a 
year would be of the order of: 

a 23.4 ton reduction in unburnt HC emissions 

0 a 114 ton reduction in CO emissions 

a 18.3 ton reduction in NO, emissions 

There is therefore a significant incentive to obtain 
more data and refine departure process modeling 
and control laws, in order to realize a larger part 
of these potential pollutant emissions reductions. 

The gate holding control scheme introduced in 
this section could have two major undesirable side 
effects: 

0 Gate shortage: some airlines might not have 
enough gate capacity at the airport to accom- 
modate aircraft being held at the gates by the 
control law. This gate shortage would become 
more severe for lower values of the control law 

parameter N,, as more and more aircraft would 
be held at the gate. However, simulation runs 
showed that at Boston Logan in 1996, the values 
of Nc used in table 8 would not cause significant 
gate shortage for most airlines. The last column 
of table 9 shows how much time an airline would 
need one additional gate to accommodate all of 
its aircraft. Over these six selected configura- 
tions which cover 82% of the 1996 traffic, an air- 
line would on average run out of gate capacity 
and require an additional gate only 144 minutes 
over the whole year. It is moreover conceivable 
that airlines could slightly modify their gate al- 
location procedures to alleviate this shortage. 

0 On-time performance statistics: the gate hold- 
ing controls scheme would affect the perceived 
on-time performance (by delaying pushbacks) 
and the actual on-time performance (by intro- 
ducing some departure delay into the system) 
of the airlines. Columns 5 and 6 in table 9 
show that for these values of the control law pa- 
rameter N,, on average only 2.2% of the push- 
backs would be delayed by more than 5 minutes, 
so that the impact on airline on-time statistics 
would be quite small. 

3.3.2 Quantitative evaluation of a predictor- 
based gate holding scheme 

The control scheme described in paragraph 3.3.1 re 
lies exclusively on the observation of the current 
state of the airport (in particular N ( t ) ,  the num- 
ber of departing aircraft on the taxiway system). It 
does not take into account future departure demand, 
or the future evolution of the runway departure ca- 
pacity (e.g. due to predictable changes in the arrival 
rate). A control scheme which would use estimates 
of future departure demand and runway capacity in 
addition to the current state of the airport should 
result in an additional reduction in runway queueing 
times. 

Subparagraphs 3.3.2.a and 3.3.2.b consider the 
availability of data on future departure demand and 
runway capacity. Subparagraph 3.3.2.c presents a 
control scheme architecture, based on departure slot 
allocation, which would take advantage of these 
data. Subparagraph 3.3.2.d presents initial results 
obtained by applying a simple departure slot alloca- 
tion algorithm to Boston Logan. 
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Table 8: Results of the control law for selected configurations at Boston Logan, using actual 1996 demand 
data (values are averaged over 10 simulation runs) 

Table 9: Impact of the control law on on-time performance and gate utilization, for selected configurations 
at Boston Logan, using actual 1996 demand data (values are averaged over 10 simulation runs) 
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3.3.2.a Departure demand information 
In current operations, the only future departure 

demand information available to the FAA Air Traf- 
fic Control Tower (ATCT) is the Flight Information 
Management System (FIMS) maintained by the air- 
lines to inform their passengers of planned departure 
times. FIMS is not always accurate since it does not 
instantly reflect some sources of potential departure 
delays: 

0 late inbound resources (aircraft, crew, flight at- 
tendants) 

0 departure holds to allow passenger connections 

0 delays in preparing the aircraft for departure 
(passenger boarding, baggage and cargo load- 
ing, catering, etc.) 

0 aircraft mechanical problems currently under 
investigation (“flights on decision”) 

It is however a good indication of future demand 
on a short time scale. 

It can be envisioned that more departure demand 
information will become available in the future. In- 
deed, since the early days of the FAA - Airlines Data 
Exchange (FADE) program, significant progress has 
been made in the definition and implementation of 
Collaborative Decision-Making (CDM) procedures, 
which allow the airlines and the FAA to exchange 
more accurate information on future departure de- 
mand in the context of Ground Delay Programs 
(GDP). Departure demand could then be predicted 
more accurately on longer time scales. 

3.3.2.b Runway capacity information 
The departure capacity of a runway system can 

be directly affected by many factors, including: 
- weather conditions 
- departure airspace constraints 
- arrivals 

The weather conditions can usually be forecasted 
with satisfying accuracy 30 minutes in the future 
(except in drifting fog conditions). Airspace con- 
straints also vary slowly and are quite predictable. 

In current operations, the future arrivals at an 
airport are not known with good accuracy, due to 
uncertainties in the timing of aircraft descent pro- 
files and approach paths. However, the new Center- 
TRACON Automation System (CTAS) has been 

shown to improve significantly the accuracy of ar- 
rival time predictions [201[211. It appears possible to 
predict future arrivals up to 15 minutes in advance 
with an accuracy of 30 seconds. 

3.3.2.c Slot allocation architecture 
The concept of landing slot allocation is used 

extensively at major congested airports such as 
Chicago O’Hare and London Heathrow, and at 
smaller airports in case of Ground Delay Programs. 
The same concept can be applied to departure oper- 
ations. However, a strict application of the concept 
would require airport tower controllers to actively 
control taxiing aircraft to ensure that they arrive in 
the correct order and at the correct times to com- 
ply with the slot allocation. This would make the 
testing and implementation of the concept difficult 
and costly. In order to minimize disruptions to the 
current controller work processes, the slot alloca- 
tion process could be limited to determining opti- 
mal pushback times. Aircraft would be held at the 
gate until a desired pushback time which should take 
them to the runway in time for their take-off slot. 
After pushback, controllers would not be required 
to ensure that aircraft are exactly complying with 
the slot allocation. The price to pay for this sim- 
plicity is an increased vulnerability to uncertainties 
in taxi times. 

Define H to be the time horizon for predictions 
and slot allocations. Based on subparagraphs 3.3.2.a 
and 3.3.2.b, a reasonable value for H would be 20 
minutes. A simple departure slot control architec- 
ture could be used to implement the concept: 

0 Step l a .  Prediction of departure runway ca- 
pacity: the future departure runway capacity 
is predicted over ( t , t  + H )  taking into account 
weather, airspace constraints, arrivals, etc. as 
outlined in subparagraph 3.3.2.a. 

0 Step l b .  Prediction of runway arrival times: 
the times at which currently taxiing aircmft will 
arrive at the runway are estimated, and the 
remaining departure runway capacity is com- 
puted. 

0 Step l c .  Prediction of departure demand: based 
on the published schedule and updates from the 
airline control centers, a “departure pool” con- 
sisting of the aircmft which will request a de- 
parture over ( t ,  t + H )  is estimated. 
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0 Step 2. Take-ofl slot allocation: an algorithm 
allocates the available departure runway capac- 
ity to  aircraft in the departure pool. The algo- 
rithm should try  t o  minimize runway queueing 
times while respecting some key constraints (e.g. 
in general, a n  aircraft cannot leave its gate be- 
fore ats published departure t ime)  and fairness 
rules (e.g. first come first served). 

0 Step 3. Selection of pushback times: a pushback 
t ime is selected f o r  each aircraft in the depar- 
ture pool which has been assigned a slot, taking 
into account the t ime it will take f o r  the air- 
craft to  reach the runway under current airport 
conditions. 

Notes: 

the slot allocation algorithm should take into 
account the uncertainty arising in the runway 
departure capacity and demand predictions. 

the selected pushback times should also take 
into account the uncertainty in the travel time 
to the runway. 

the control points in the departure process are 
currently the object of detailed studies[lgI. 

3.3.2.d SJo t a JJoca tion algorithm 
Many algorithms (or combinations thereof) can 

be used to optimize the slot allocation process, in- 
cluding: 
- Heuristics 
- Mathematical programming 
- Dynamic programming (DP) or approximate DP 

A simple heuristic was used to obtain a conserva- 
tive estimate of potential benefits of the departure 
slot allocation concept. This heuristic is an imple- 
mentation of the architecture described in subpara- 
graph 3.3.2.c. 

0 Step la:  the predicted departure runway capac- 
ity is taken to  be constant over ( t ,  t + H )  and 
equal t o  the average capacity observed in this 
configuration under high taxiway loading (e.g 
under configuration 9, figure 11 shows that the 
average departure capacity under high taxiway 
loading is around 0.35 aircraft/minute). 

0 Step lb: the runway arrival time of each taxiing 
aircraft is estimated b y  adding to its pushback 
time the average travel time f o r  its airline in 
this particular runway configuration (see para- 
graph 2.2.2). 

0 Step IC: future departure requests are assumed 
to be known exactly over ( t ,  t + H ) .  

0 Step 2. The slot allocation algorithm spreads 
the departure demand t o  ensure that the pre- 
dicted runway queue over (t,t + H )  does not  
exceed a target runway buffer RQ,. Slots are 
allocated according to  the following variation of 
the first come first served rule: out of all the 
aircraft in the departure pool which could be as- 
signed to  a take-off slot, the aircraft that is  ac- 
tually assigned is  the one with the earliest de- 
parture request time. 

In initial computer simulation tests, the heuristic 
departure slot allocation algorithm described above 
did not perform as well as the simple state-feedback 
gate holding scheme introduced in paragraph 3.3.1. 

The relatively poor performance of the predictor- 
based algorithm can be attributed to the large uncer- 
tainties in travel times and departure capacity. The 
introduction of additional airport operations data 
into the model (such as arrivals and turboprop op- 
erations) should reduce these uncertainties and im- 
prove the performance of slot allocation algorithms. 

Conclusion 

In this paper, we have considered the problem of 
modeling the departure process at a busy airport for 
the purpose of alleviating surface congestion. Our 
experimental investigation has allowed us to p r e  
vide a simple, yet extensively validated dynamical 
queueing model of the departure process. Prelimi- 
nary investigations show that active control strate- 
gies on this model can reduce congestion on the 
airport surface using aircraft gate holding. These 
strategies allow a reduction in direct operating costs 
and environmental costs without increasing total de- 
lay significantly. Their implementation would be 
compatible with the current airport operations and 
human control structure. Further research will com- 
bine aircraft departure control with arrivals control, 
with the intent to improve the overall airport effi- 
ciency. Further efficiency will also be gained by re- 
ducing model uncertainties and investigating more 
advanced control laws. 
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